VKASIMOVE.RU

Группа авторов Data Mining and Learning Analytics


Addresses the impacts of data mining on education and reviews applications in educational research teaching, and learning This book discusses the insights, challenges, issues, expectations, and practical implementation of data mining (DM) within educational mandates. Initial series of chapters offer a general overview of DM, Learning Analytics (LA), and data collection models in the context of educational research, while also defining and discussing data mining’s four guiding principles— prediction, clustering, rule association, and outlier detection. The next series of chapters showcase the pedagogical applications of Educational Data Mining (EDM) and feature case studies drawn from Business, Humanities, Health Sciences, Linguistics, and Physical Sciences education that serve to highlight the successes and some of the limitations of data mining research applications in educational settings. The remaining chapters focus exclusively on EDM’s emerging role in helping to advance educational research—from identifying at-risk students and closing socioeconomic gaps in achievement to aiding in teacher evaluation and facilitating peer conferencing. This book features contributions from international experts in a variety of fields. Includes case studies where data mining techniques have been effectively applied to advance teaching and learning Addresses applications of data mining in educational research, including: social networking and education; policy and legislation in the classroom; and identification of at-risk students Explores Massive Open Online Courses (MOOCs) to study the effectiveness of online networks in promoting learning and understanding the communication patterns among users and students Features supplementary resources including a primer on foundational aspects of educational mining and learning analytics Data Mining and Learning Analytics: Applications in Educational Research is written for both scientists in EDM and educators interested in using and integrating DM and LA to improve education and advance educational research.

12689.55 RUR

/ / похожие

Подробнее

Группа авторов Machine Learning and Big Data

Группа авторов Data Mining Cookbook


Increase profits and reduce costs by utilizing this collection of models of the most commonly asked data mining questions In order to find new ways to improve customer sales and support, and as well as manage risk, business managers must be able to mine company databases. This book provides a step-by-step guide to creating and implementing models of the most commonly asked data mining questions. Readers will learn how to prepare data to mine, and develop accurate data mining questions. The author, who has over ten years of data mining experience, also provides actual tested models of specific data mining questions for marketing, sales, customer service and retention, and risk management. A CD-ROM, sold separately, provides these models for reader use.

7731.66 RUR

/ / похожие

Подробнее

Giudici Paolo Applied Data Mining for Business and Industry


The increasing availability of data in our current, information overloaded society has led to the need for valid tools for its modelling and analysis. Data mining and applied statistical methods are the appropriate tools to extract knowledge from such data. This book provides an accessible introduction to data mining methods in a consistent and application oriented statistical framework, using case studies drawn from real industry projects and highlighting the use of data mining methods in a variety of business applications. Introduces data mining methods and applications. Covers classical and Bayesian multivariate statistical methodology as well as machine learning and computational data mining methods. Includes many recent developments such as association and sequence rules, graphical Markov models, lifetime value modelling, credit risk, operational risk and web mining. Features detailed case studies based on applied projects within industry. Incorporates discussion of data mining software, with case studies analysed using R. Is accessible to anyone with a basic knowledge of statistics or data analysis. Includes an extensive bibliography and pointers to further reading within the text. Applied Data Mining for Business and Industry, 2nd edition is aimed at advanced undergraduate and graduate students of data mining, applied statistics, database management, computer science and economics. The case studies will provide guidance to professionals working in industry on projects involving large volumes of data, such as customer relationship management, web design, risk management, marketing, economics and finance.

16927.3 RUR

/ / похожие

Подробнее

Группа авторов Data Mining Techniques in Grid Computing Environments


Based around eleven international real life case studies and including contributions from leading experts in the field this groundbreaking book explores the need for the grid-enabling of data mining applications and provides a comprehensive study of the technology, techniques and management skills necessary to create them. This book provides a simultaneous design blueprint, user guide, and research agenda for current and future developments and will appeal to a broad audience; from developers and users of data mining and grid technology, to advanced undergraduate and postgraduate students interested in this field.

14177.76 RUR

/ / похожие

Подробнее

Mourad Elloumi Biological Knowledge Discovery Handbook


The first comprehensive overview of preprocessing, mining, and postprocessing of biological data Molecular biology is undergoing exponential growth in both the volume and complexity of biological data—and knowledge discovery offers the capacity to automate complex search and data analysis tasks. This book presents a vast overview of the most recent developments on techniques and approaches in the field of biological knowledge discovery and data mining (KDD)—providing in-depth fundamental and technical field information on the most important topics encountered. Written by top experts, Biological Knowledge Discovery Handbook: Preprocessing, Mining, and Postprocessing of Biological Data covers the three main phases of knowledge discovery (data preprocessing, data processing—also known as data mining—and data postprocessing) and analyzes both verification systems and discovery systems. BIOLOGICAL DATA PREPROCESSING Part A: Biological Data Management Part B: Biological Data Modeling Part C: Biological Feature Extraction Part D Biological Feature Selection BIOLOGICAL DATA MINING Part E: Regression Analysis of Biological Data Part F Biological Data Clustering Part G: Biological Data Classification Part H: Association Rules Learning from Biological Data Part I: Text Mining and Application to Biological Data Part J: High-Performance Computing for Biological Data Mining Combining sound theory with practical applications in molecular biology, Biological Knowledge Discovery Handbook is ideal for courses in bioinformatics and biological KDD as well as for practitioners and professional researchers in computer science, life science, and mathematics.

18254.95 RUR

/ / похожие

Подробнее

Группа авторов Modelowanie dla biznesu. Regresja logistyczna, regresja Poissona, survival data mining, CRM, credit scoring

Gordon Linoff S. Data Mining Techniques. For Marketing, Sales, and Customer Relationship Management


Packed with more than forty percent new and updated material, this edition shows business managers, marketing analysts, and data mining specialists how to harness fundamental data mining methods and techniques to solve common types of business problems Each chapter covers a new data mining technique, and then shows readers how to apply the technique for improved marketing, sales, and customer support The authors build on their reputation for concise, clear, and practical explanations of complex concepts, making this book the perfect introduction to data mining More advanced chapters cover such topics as how to prepare data for analysis and how to create the necessary infrastructure for data mining Covers core data mining techniques, including decision trees, neural networks, collaborative filtering, association rules, link analysis, clustering, and survival analysis

4574.95 RUR

/ / похожие

Подробнее

Jared Dean Big Data, Data Mining, and Machine Learning. Value Creation for Business Leaders and Practitioners


With big data analytics comes big insights into profitability Big data is big business. But having the data and the computational power to process it isn't nearly enough to produce meaningful results. Big Data, Data Mining, and Machine Learning: Value Creation for Business Leaders and Practitioners is a complete resource for technology and marketing executives looking to cut through the hype and produce real results that hit the bottom line. Providing an engaging, thorough overview of the current state of big data analytics and the growing trend toward high performance computing architectures, the book is a detail-driven look into how big data analytics can be leveraged to foster positive change and drive efficiency. With continued exponential growth in data and ever more competitive markets, businesses must adapt quickly to gain every competitive advantage available. Big data analytics can serve as the linchpin for initiatives that drive business, but only if the underlying technology and analysis is fully understood and appreciated by engaged stakeholders. This book provides a view into the topic that executives, managers, and practitioners require, and includes: A complete overview of big data and its notable characteristics Details on high performance computing architectures for analytics, massively parallel processing (MPP), and in-memory databases Comprehensive coverage of data mining, text analytics, and machine learning algorithms A discussion of explanatory and predictive modeling, and how they can be applied to decision-making processes Big Data, Data Mining, and Machine Learning provides technology and marketing executives with the complete resource that has been notably absent from the veritable libraries of published books on the topic. Take control of your organization's big data analytics to produce real results with a resource that is comprehensive in scope and light on hyperbole.

4574.95 RUR

/ / похожие

Подробнее

Sushmita Mitra Data Mining


First title to ever present soft computing approaches and their application in data mining, along with the traditional hard-computing approaches Addresses the principles of multimedia data compression techniques (for image, video, text) and their role in data mining Discusses principles and classical algorithms on string matching and their role in data mining

15371.82 RUR

/ / похожие

Подробнее

Группа авторов Mining and its Environmental Impact

Stéphane Tufféry Data Mining and Statistics for Decision Making


Data mining is the process of automatically searching large volumes of data for models and patterns using computational techniques from statistics, machine learning and information theory; it is the ideal tool for such an extraction of knowledge. Data mining is usually associated with a business or an organization's need to identify trends and profiles, allowing, for example, retailers to discover patterns on which to base marketing objectives. This book looks at both classical and recent techniques of data mining, such as clustering, discriminant analysis, logistic regression, generalized linear models, regularized regression, PLS regression, decision trees, neural networks, support vector machines, Vapnik theory, naive Bayesian classifier, ensemble learning and detection of association rules. They are discussed along with illustrative examples throughout the book to explain the theory of these methods, as well as their strengths and limitations. Key Features: Presents a comprehensive introduction to all techniques used in data mining and statistical learning, from classical to latest techniques. Starts from basic principles up to advanced concepts. Includes many step-by-step examples with the main software (R, SAS, IBM SPSS) as well as a thorough discussion and comparison of those software. Gives practical tips for data mining implementation to solve real world problems. Looks at a range of tools and applications, such as association rules, web mining and text mining, with a special focus on credit scoring. Supported by an accompanying website hosting datasets and user analysis. Statisticians and business intelligence analysts, students as well as computer science, biology, marketing and financial risk professionals in both commercial and government organizations across all business and industry sectors will benefit from this book.

9419.81 RUR

/ / похожие

Подробнее

Antonios Chorianopoulos Effective CRM using Predictive Analytics


A step-by-step guide to data mining applications in CRM. Following a handbook approach, this book bridges the gap between analytics and their use in everyday marketing, providing guidance on solving real business problems using data mining techniques. The book is organized into three parts. Part one provides a methodological roadmap, covering both the business and the technical aspects. The data mining process is presented in detail along with specific guidelines for the development of optimized acquisition, cross/ deep/ up selling and retention campaigns, as well as effective customer segmentation schemes. In part two, some of the most useful data mining algorithms are explained in a simple and comprehensive way for business users with no technical expertise. Part three is packed with real world case studies which employ the use of three leading data mining tools: IBM SPSS Modeler, RapidMiner and Data Mining for Excel. Case studies from industries including banking, retail and telecommunications are presented in detail so as to serve as templates for developing similar applications. Key Features: Includes numerous real-world case studies which are presented step by step, demystifying the usage of data mining models and clarifying all the methodological issues. Topics are presented with the use of three leading data mining tools: IBM SPSS Modeler, RapidMiner and Data Mining for Excel. Accompanied by a website featuring material from each case study, including datasets and relevant code. Combining data mining and business knowledge, this practical book provides all the necessary information for designing, setting up, executing and deploying data mining techniques in CRM. Effective CRM using Predictive Analytics will benefit data mining practitioners and consultants, data analysts, statisticians, and CRM officers. The book will also be useful to academics and students interested in applied data mining.

5148.27 RUR

/ / похожие

Подробнее

Pawel Cichosz Data Mining Algorithms


Data Mining Algorithms is a practical, technically-oriented guide to data mining algorithms that covers the most important algorithms for building classification, regression, and clustering models, as well as techniques used for attribute selection and transformation, model quality evaluation, and creating model ensembles. The author presents many of the important topics and methodologies widely used in data mining, whilst demonstrating the internal operation and usage of data mining algorithms using examples in R.

7102.2 RUR

/ / похожие

Подробнее

Группа авторов Data Analytics in Bioinformatics


Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel machine learning computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics approximating classification and prediction of disease, feature selection, dimensionality reduction, gene selection and classification of microarray data and many more.

21119.98 RUR

/ / похожие

Подробнее

Gordon Linoff S. Data Mining Techniques. For Marketing, Sales, and Customer Relationship Management


The leading introductory book on data mining, fully updated and revised! When Berry and Linoff wrote the first edition of Data Mining Techniques in the late 1990s, data mining was just starting to move out of the lab and into the office and has since grown to become an indispensable tool of modern business. This new edition—more than 50% new and revised— is a significant update from the previous one, and shows you how to harness the newest data mining methods and techniques to solve common business problems. The duo of unparalleled authors share invaluable advice for improving response rates to direct marketing campaigns, identifying new customer segments, and estimating credit risk. In addition, they cover more advanced topics such as preparing data for analysis and creating the necessary infrastructure for data mining at your company. Features significant updates since the previous edition and updates you on best practices for using data mining methods and techniques for solving common business problems Covers a new data mining technique in every chapter along with clear, concise explanations on how to apply each technique immediately Touches on core data mining techniques, including decision trees, neural networks, collaborative filtering, association rules, link analysis, survival analysis, and more Provides best practices for performing data mining using simple tools such as Excel Data Mining Techniques, Third Edition covers a new data mining technique with each successive chapter and then demonstrates how you can apply that technique for improved marketing, sales, and customer support to get immediate results.

3812.46 RUR

/ / похожие

Подробнее

Russell Anderson K. Visual Data Mining. The VisMiner Approach


A visual approach to data mining. Data mining has been defined as the search for useful and previously unknown patterns in large datasets, yet when faced with the task of mining a large dataset, it is not always obvious where to start and how to proceed. This book introduces a visual methodology for data mining demonstrating the application of methodology along with a sequence of exercises using VisMiner. VisMiner has been developed by the author and provides a powerful visual data mining tool enabling the reader to see the data that they are working on and to visually evaluate the models created from the data. Key features: Presents visual support for all phases of data mining including dataset preparation. Provides a comprehensive set of non-trivial datasets and problems with accompanying software. Features 3-D visualizations of multi-dimensional datasets. Gives support for spatial data analysis with GIS like features. Describes data mining algorithms with guidance on when and how to use. Accompanied by VisMiner, a visual software tool for data mining, developed specifically to bridge the gap between theory and practice. Visual Data Mining: The VisMiner Approach is designed as a hands-on work book to introduce the methodologies to students in data mining, advanced statistics, and business intelligence courses. This book provides a set of tutorials, exercises, and case studies that support students in learning data mining processes. In praise of the VisMiner approach: «What we discovered among students was that the visualization concepts and tools brought the analysis alive in a way that was broadly understood and could be used to make sound decisions with greater certainty about the outcomes» —Dr. James V. Hansen, J. Owen Cherrington Professor, Marriott School, Brigham Young University, USA «Students learn best when they are able to visualize relationships between data and results during the data mining process. VisMiner is easy to learn and yet offers great visualization capabilities throughout the data mining process. My students liked it very much and so did I.» —Dr. Douglas Dean, Assoc. Professor of Information Systems, Marriott School, Brigham Young University, USA

7685.91 RUR

/ / похожие

Подробнее

Daniel Larose T. Discovering Knowledge in Data. An Introduction to Data Mining


The field of data mining lies at the confluence of predictive analytics, statistical analysis, and business intelligence. Due to the ever-increasing complexity and size of data sets and the wide range of applications in computer science, business, and health care, the process of discovering knowledge in data is more relevant than ever before. This book provides the tools needed to thrive in today’s big data world. The author demonstrates how to leverage a company’s existing databases to increase profits and market share, and carefully explains the most current data science methods and techniques. The reader will “learn data mining by doing data mining”. By adding chapters on data modelling preparation, imputation of missing data, and multivariate statistical analysis, Discovering Knowledge in Data, Second Edition remains the eminent reference on data mining. The second edition of a highly praised, successful reference on data mining, with thorough coverage of big data applications, predictive analytics, and statistical analysis. Includes new chapters on Multivariate Statistics, Preparing to Model the Data, and Imputation of Missing Data, and an Appendix on Data Summarization and Visualization Offers extensive coverage of the R statistical programming language Contains 280 end-of-chapter exercises Includes a companion website for university instructors who adopt the book

8504.82 RUR

/ / похожие

Подробнее

Jamie MacLennan Data Mining with Microsoft SQL Server 2008


Understand how to use the new features of Microsoft SQL Server 2008 for data mining by using the tools in Data Mining with Microsoft SQL Server 2008, which will show you how to use the SQL Server Data Mining Toolset with Office 2007 to mine and analyze data. Explore each of the major data mining algorithms, including naive bayes, decision trees, time series, clustering, association rules, and neural networks. Learn more about topics like mining OLAP databases, data mining with SQL Server Integration Services 2008, and using Microsoft data mining to solve business analysis problems.

4574.95 RUR

/ / похожие

Подробнее

Albalate Amparo Semi-Supervised and Unsupervised Machine Learning. Novel Strategies


This book provides a detailed and up-to-date overview on classification and data mining methods. The first part is focused on supervised classification algorithms and their applications, including recent research on the combination of classifiers. The second part deals with unsupervised data mining and knowledge discovery, with special attention to text mining. Discovering the underlying structure on a data set has been a key research topic associated to unsupervised techniques with multiple applications and challenges, from web-content mining to the inference of cancer subtypes in genomic microarray data. Among those, the book focuses on a new application for dialog systems which can be thereby made adaptable and portable to different domains. Clustering evaluation metrics and new approaches, such as the ensembles of clustering algorithms, are also described.

10339.38 RUR

/ / похожие

Подробнее
vkasimove.ru — Каталог цен и описаний на компьютерную и бытовую технику, товары для офис и дома, электронику, товаров для сада и дачи. Мы занимаемся поиском лучших цен в интернет магазинах по всей России, знаем где купить Группа авторов Data Mining and Learning по оптимальной цене в онлайн-магазинах. На нашем сайте vkasimove.ru предоставлена вся необходимая информация для правильной покупки Группа авторов Data Mining and Learning — фотографии товаров, отзывы пользователей, поиск по модели и производителю, наименованию или модели, инструкции по эксплуатации, а так же экспертные обзоры, сайты предлагающие покупу онлайн с доставкой заказа в ваш город.